- orientation preserving transformation
- сохраняющее ориентацию преобразование
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Orientation (vector space) — See also: orientation (geometry) The left handed orientation is shown on the left, and the right handed on the right. In mathematics, orientation is a notion that in two dimensions allows one to say when a cycle goes around clockwise or… … Wikipedia
Möbius transformation — Not to be confused with Möbius transform or Möbius function. In geometry, a Möbius transformation of the plane is a rational function of the form of one complex variable z; here the coefficients a, b, c, d are complex numbers satisfying ad − … Wikipedia
Interval exchange transformation — In mathematics, an interval exchange transformation is a kind of dynamical system that generalises the idea of a circle rotation. The phase space consists of the unit interval, and the transformation acts by cutting the interval into several… … Wikipedia
Determinant — This article is about determinants in mathematics. For determinants in epidemiology, see Risk factor. In linear algebra, the determinant is a value associated with a square matrix. It can be computed from the entries of the matrix by a specific… … Wikipedia
Rotation group — This article is about rotations in three dimensional Euclidean space. For rotations in four dimensional Euclidean space, see SO(4). For rotations in higher dimensions, see orthogonal group. In mechanics and geometry, the rotation group is the… … Wikipedia
Modular group — For a group whose lattice of subgroups is modular see Iwasawa group. In mathematics, the modular group Γ is a fundamental object of study in number theory, geometry, algebra, and many other areas of advanced mathematics. The modular group can be… … Wikipedia
Kleinian group — In mathematics, a Kleinian group, named after Felix Klein, is a finitely generated discrete group Gamma; of orientation preserving conformal (i.e. angle preserving) maps of the open unit ball B^3 in mathbb{R}^3 to itself. Some… … Wikipedia
Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… … Wikipedia
Icosahedral symmetry — A Soccer ball, a common example of a spherical truncated icosahedron, has full icosahedral symmetry. A regular icosahedron has 60 rotational (or orientation preserving) symmetries, and a symmetry order of 120 including transformations that… … Wikipedia
SL2(R) — In mathematics, the special linear group SL2(R) is the group of all real 2 times; 2 matrices with determinant one:: mbox{SL} 2(mathbb{R}) = left{ egin{bmatrix}a b c dend{bmatrix} : a,b,c,dinmathbb{R}mbox{ and }ad bc=1 ight}.It is a real Lie… … Wikipedia
Symplectic vector space — In mathematics, a symplectic vector space is a vector space V equipped with a nondegenerate, skew symmetric, bilinear form omega; called the symplectic form. Explicitly, a symplectic form is a bilinear form omega; : V times; V rarr; R which is *… … Wikipedia